Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 268
Filtrar
1.
Sci Rep ; 12(1): 3068, 2022 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-35197500

RESUMO

Serratia marcescens is an opportunistic bacterium that infects a wide range of hosts including humans. It is a potent pathogen in a septic injury model of Drosophila melanogaster since a few bacteria directly injected in the body cavity kill the insect within a day. In contrast, flies do not succumb to ingested bacteria for days even though some bacteria cross the intestinal barrier into the hemolymph within hours. The mechanisms by which S. marcescens attacks enterocytes and damages the intestinal epithelium remain uncharacterized. To better understand intestinal infections, we performed a genetic screen for loss of virulence of ingested S. marcescens and identified FliR, a structural component of the flagellum, as a virulence factor. Next, we compared the virulence of two flagellum mutants fliR and flhD in two distinct S. marcescens strains. Both genes are required for S. marcescens to escape the gut lumen into the hemocoel, indicating that the flagellum plays an important role for the passage of bacteria through the intestinal barrier. Unexpectedly, fliR but not flhD is involved in S. marcescens-mediated damages of the intestinal epithelium that ultimately contribute to the demise of the host. Our results therefore suggest a flagellum-independent role for fliR in bacterial virulence.


Assuntos
Proteínas de Bactérias/genética , Proteínas de Bactérias/fisiologia , Drosophila melanogaster/microbiologia , Flagelos/genética , Flagelos/fisiologia , Gastroenterite/microbiologia , Mucosa Intestinal/microbiologia , Proteínas de Membrana/genética , Proteínas de Membrana/fisiologia , Infecções por Serratia , Serratia marcescens/genética , Serratia marcescens/patogenicidade , Animais , Modelos Animais de Doenças , Mucosa Intestinal/patologia , Mutação , Virulência/genética
2.
Appl Biochem Biotechnol ; 194(2): 671-693, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34449042

RESUMO

The growth of respiratory diseases, as witnessed through the SARS and COVID-19 outbreaks, and antimicrobial-resistance together pose a serious threat to humanity. One reason for antimicrobial resistance is formation of bacterial biofilms. In this study the sulphated polysaccharides from green algae Chlamydomonas reinhardtii (Cr-SPs) is tested for its antibacterial and antibiofilm potential against Klebsiella pneumoniae and Serratia marcescens. Agar cup assay clearly indicated the antibacterial potential of Cr-SPs. Minimum inhibitory concentration (MIC50) of Cr-SPs against Klebsiella pneumoniae was found to be 850 µg/ml, and it is 800 µg/ml in Serratia marcescens. Time-kill and colony-forming ability assays suggest the concentration-dependent bactericidal potential of Cr-SPs. Cr-SPs showed 74-100% decrease in biofilm formation in a concentration-dependent manner by modifying the cell surface hydrophobic properties of these bacteria. Cr-SPs have also distorted preformed-biofilms by their ability to interact and destroy the extra polymeric substance and eDNA of the matured biofilm. Scanning electron microscopy analysis showed that Cr-SPs effectively altered the morphology of these bacterial cells and distorted the bacterial biofilms. Furthermore reduced protease, urease and prodigiosin pigment production suggest that Cr-SPs interferes the quorum sensing mechanism in these bacteria. The current study paves way towards developing Cr-SPs as a control strategy for treatment of respiratory tract infections.


Assuntos
Biofilmes/efeitos dos fármacos , Polissacarídeos/farmacologia , Percepção de Quorum/efeitos dos fármacos , Infecções Respiratórias/tratamento farmacológico , Antibacterianos/química , Antibacterianos/farmacologia , Biofilmes/crescimento & desenvolvimento , COVID-19/virologia , Clorófitas/química , Humanos , Klebsiella pneumoniae/crescimento & desenvolvimento , Klebsiella pneumoniae/patogenicidade , Testes de Sensibilidade Microbiana , Polissacarídeos/química , Infecções Respiratórias/microbiologia , SARS-CoV-2/efeitos dos fármacos , Serratia marcescens/crescimento & desenvolvimento , Serratia marcescens/patogenicidade , Tratamento Farmacológico da COVID-19
3.
Nucleic Acids Res ; 50(1): 127-148, 2022 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-34893884

RESUMO

Serratia marcescens is a Gram-negative bacterium of the Enterobacteriaceae family that can produce numbers of biologically active secondary metabolites. However, our understanding of the regulatory mechanisms behind secondary metabolites biosynthesis in S. marcescens remains limited. In this study, we identified an uncharacterized LysR family transcriptional regulator, encoding gene BVG90_12635, here we named psrA, that positively controlled prodigiosin synthesis in S. marcescens. This phenotype corresponded to PsrA positive control of transcriptional of the prodigiosin-associated pig operon by directly binding to a regulatory binding site (RBS) and an activating binding site (ABS) in the promoter region of the pig operon. We demonstrated that L-proline is an effector for the PsrA, which enhances the binding affinity of PsrA to its target promoters. Using transcriptomics and further experiments, we show that PsrA indirectly regulates pleiotropic phenotypes, including serrawettin W1 biosynthesis, extracellular polysaccharide production, biofilm formation, swarming motility and T6SS-mediated antibacterial activity in S. marcescens. Collectively, this study proposes that PsrA is a novel regulator that contributes to antibiotic synthesis, bacterial virulence, cell motility and extracellular polysaccharides production in S. marcescens and provides important clues for future studies exploring the function of the PsrA and PsrA-like proteins which are widely present in many other bacteria.


Assuntos
Proteínas de Bactérias/genética , Biofilmes , Prodigiosina/biossíntese , Serratia marcescens/genética , Fatores de Transcrição/genética , Proteínas de Bactérias/metabolismo , Depsipeptídeos/biossíntese , Movimento , Óperon , Polissacarídeos Bacterianos/biossíntese , Regiões Promotoras Genéticas , Serratia marcescens/metabolismo , Serratia marcescens/patogenicidade , Fatores de Transcrição/metabolismo
4.
J Mol Model ; 27(11): 339, 2021 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-34731299

RESUMO

Food safety remains a significant challenge despite the growth and development in agricultural research and the advent of modern biotechnological and agricultural tools. Though the agriculturist struggles to aid the growing population's needs, many pathogen-based plant diseases by their direct impact on cell division and tissue development have led to the loss of tons of food crops every year. Though there are many conventional and traditional methods to overcome this issue, the amount and time spend are huge. Scientists have developed systems biology tools to study the root cause of the problem and rectify it. Host-pathogen protein interactions (HPIs) have a promising role in identifying the pathogens' strategy to conquer the host organism. In this paper, the interactions between the host Rhynchophorus ferrugineus (an invasive wood-boring pest that destroys palm) and the pathogens Proteus mirabilis, Serratia marcescens, and Klebsiella pneumoniae are comprehensively studied using protein-protein interactions, molecular docking, and followed by 200 ns molecular dynamic simulations. This study elucidates the structural and functional basis of these proteins leading towards better plant health, production, and reliability.


Assuntos
Produtos Agrícolas/genética , Interações Hospedeiro-Patógeno/genética , Phoeniceae/genética , Mapas de Interação de Proteínas/genética , Produção Agrícola , Produtos Agrícolas/microbiologia , Inocuidade dos Alimentos , Humanos , Klebsiella pneumoniae/patogenicidade , Simulação de Dinâmica Molecular , Phoeniceae/parasitologia , Proteus mirabilis/patogenicidade , Serratia marcescens/patogenicidade
5.
Biotechnol Lett ; 43(12): 2243-2257, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34652635

RESUMO

The biopreservation strategy allows extending the shelf life and food safety through the use of indigenous or controlled microbiota and their antimicrobial compounds. The aim of this work was to characterize an inhibitory substance with bacteriocin-like activity (Sak-59) produced by the potentially probiotic L. sakei strain from artisanal traditional Kazakh horse meat product Kazy. The maximum production of Sak-59 occurred at the stationary phase of the L. sakei growth. Sak-59 showed inhibitory activity against gram-positive meat spoilage bacteria strains of Listeria monocytogenes, Staphylococcus aureus, and pathogenic gram-negative bacteria strains of Serratia marcescens and Escherichia coli, but not against the tested Lactobacilli strains. Sak-59 activity, as measured by diffusion assay in agar wells, was completely suppressed after treatment with proteolytic enzymes and remained stable after treatment with α-amylase and lipase, indicating that Sak-59 is a peptide and most likely not glycosylated or lipidated. It was concluded that Sak-59 is a potential new bacteriocin with a characteristic activity spectrum, which can be useful in the food and feed industries.


Assuntos
Bacteriocinas/genética , Microbiologia de Alimentos , Latilactobacillus sakei/química , Produtos da Carne/microbiologia , Animais , Antibacterianos/química , Antibacterianos/farmacologia , Bacteriocinas/isolamento & purificação , Bacteriocinas/farmacologia , Escherichia coli/efeitos dos fármacos , Escherichia coli/patogenicidade , Armazenamento de Alimentos , Cavalos/microbiologia , Humanos , Latilactobacillus sakei/genética , Peptídeos/química , Peptídeos/farmacologia , Serratia marcescens/efeitos dos fármacos , Serratia marcescens/patogenicidade , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/patogenicidade
6.
Braz J Microbiol ; 52(2): 627-638, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33686563

RESUMO

BACKGROUND: Serratia marcescens becomes an apparent nosocomial pathogen and causes a variety of infections. S. marcescens possess various virulence factors that are regulated by intercellular communication system quorum sensing (QS). Targeting bacterial virulence is a proposed strategy to overcome bacterial resistance. Sitagliptin anti-QS activity has been demonstrated previously and we aimed in this study to investigate the effects of antidiabetic drugs vildagliptin and metformin compared to sitagliptin on S. marcescens pathogenesis. METHODS: We assessed the effects of tested drugs in subinhibitory concentrations phenotypically on the virulence factors and genotypically on the virulence encoding genes' expressions. The protection of tested drugs on S. marcescens pathogenesis was performed in vivo. Molecular docking study has been conducted to evaluate the interference capabilities of tested drugs to the SmaR QS receptor. RESULTS: Vildagliptin reduced the expression of virulence encoding genes but did not show in vitro or in vivo anti-virulence activities. Metformin reduced the expression of virulence encoding genes and inhibited bacterial virulence in vitro but did not show in vivo protection. Sitagliptin significantly inhibited virulence factors in vitro, reduced the expression of virulence factors and protected mice from S. marcescens. Docking study revealed that sitagliptin is more active than metformin and fully binds to SmaR receptor, whereas vildagliptin had single interaction to SmaR. CONCLUSION: The downregulation of virulence genes was not enough to show anti-virulence activities. Hindering of QS receptors may play a crucial role in diminishing bacterial virulence.


Assuntos
Antibacterianos/farmacologia , Reposicionamento de Medicamentos , Hipoglicemiantes/farmacologia , Infecções por Serratia/tratamento farmacológico , Serratia marcescens/efeitos dos fármacos , Animais , Antibacterianos/química , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Feminino , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Humanos , Hipoglicemiantes/química , Metformina/química , Metformina/farmacologia , Camundongos , Simulação de Acoplamento Molecular , Infecções por Serratia/microbiologia , Serratia marcescens/genética , Serratia marcescens/patogenicidade , Serratia marcescens/fisiologia , Vildagliptina/química , Vildagliptina/farmacologia , Virulência/efeitos dos fármacos , Fatores de Virulência/química , Fatores de Virulência/genética , Fatores de Virulência/metabolismo
7.
J Invertebr Pathol ; 183: 107562, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33652013

RESUMO

Host plays an important role in influencing virulence of a pathogen and efficacy of a biopesticide. The present study was aimed to characterize the possible factors present in Spodoptera litura that influenced pathogenecity of orally ingested S. marcescens strains, differing in their virulence. Fifth instar larvae of S. litura responded differently as challenged by two Serratia marcescens strains, SEN (virulent strain, LC50 7.02 103 cfu/ml) and ICC-4 (non-virulent strain, LC50 1.19 1012 cfu/ml). Considerable increase in activity of lytic enzymes protease and phospholipase was recorded in the gut and hemolymph of larvae fed on diet supplemented with S. marcescens strain ICC-4 as compared to the larvae treated with S. marcescens strain SEN. However, a significant up-regulation of antioxidative enzymes SOD (in foregut and midgut), CAT (in the midgut) and GST (in the foregut and hemolymph) was recorded in larvae fed on diet treated with the virulent S. marcescens strain SEN in comparison to larvae fed on diet treated with the non-virulent S. marcescens strain ICC-4. Activity of defense related enzymes lysozyme and phenoloxidase activity were also higher in the hemolymph of larvae fed with diet treated with S. marcescens strain SEN as compared to hemolymph of S. marcescens strain ICC-4 treated larvae. More number of over-expressed proteins was observed in the gut and hemolymph of S. marcescens strains ICC-4 and SEN treated larvae, respectively. Identification of the selected differentially expressed proteins indicated induction of proteins involved in insect innate immune response (Immunoglobulin I-set domain, Apolipophorin III, leucine rich repeat and Titin) in S. marcescens strain SEN treated larvae. Over-expression of two proteins, actin related protein and mt DNA helicase, were noted in S. marcescens treated larvae with very high levels observed in the non-virulent strain. Up-regulation of homeobox protein was noted only in S. marcescens strain ICC-4 challenged larvae. This study indicated that ingestion of non-virulent S. marcescens strain ICC-4 induced strong immune response in insect gut while there was weak response to the virulent S. marcescens strain SEN which probably resulted in difference in their virulence.


Assuntos
Agentes de Controle Biológico/farmacologia , Serratia marcescens/fisiologia , Serratia marcescens/patogenicidade , Spodoptera/virologia , Animais , Hemolinfa/virologia , Larva/crescimento & desenvolvimento , Larva/virologia , Spodoptera/crescimento & desenvolvimento , Virulência
8.
Arch Microbiol ; 203(2): 533-541, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32970221

RESUMO

Serratia marcescens is an emerging opportunistic bacterium that can cause healthcare-associated infections. The high rate of multidrug resistance and the ability to produce a set of virulence factors, by which it can produce infectious diseases makes it urgent to find an alternative approach to the treatment of such infections. Disarming of virulence by targeting of quorum sensing (QS) as the regulating mechanism of virulence is a promising approach that has no effect on bacterial growth that is considered a key factor in emergence of resistance. This study was designed to investigate the ability of sub-inhibitory concentrations (sub-MICs) of sotolon to attenuate virulence of a clinical isolate of S. marcescens. Sotolon at 25 and 50 µg/ml inhibited 35.2 and 47.5% of biofilm formation, respectively. The inhibition of swimming motility were 41.4 and 69.3%, while that of swarming motility were 77.6 and 86.8% at 25 and 50 µg/ml, respectively. Moreover, sotolon reduced prodigiosin production by 76.6 and 87.6% at concentrations of 25 and 50 µg/ml, respectively. Protease activity was reduced by 25 µg/ml of sotolon by 54.8% and was completely blocked at 50 µg/ml. The relative expression of genes regulating virulence factors decreased by 40% for fimA, 29% for fimC, 59% for flhC, 57% for flhD, 39% for bsmB, 37% for rssB, 49% for rsmA, 54% for pigP, and 62% for shlA gene in the presence of 50 µg/ml sotolon. In conclusion, sotolon is an anti-virulence agent that could be used for the treatment of S.marcescens hospital-acquired infections.


Assuntos
Furanos/farmacologia , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Serratia marcescens/efeitos dos fármacos , Serratia marcescens/patogenicidade , Fatores de Virulência/genética , Antibacterianos/farmacologia , Biofilmes/efeitos dos fármacos , Infecção Hospitalar/tratamento farmacológico , Ativação Enzimática/efeitos dos fármacos , Humanos , Peptídeo Hidrolases/metabolismo , Prodigiosina/metabolismo , Percepção de Quorum/efeitos dos fármacos , Infecções por Serratia/tratamento farmacológico , Serratia marcescens/genética
9.
S Afr Med J ; 111(8): 729-731, 2021 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-35227352

RESUMO

The newer beta-lactam-inhibitor combination (BLIC) antibiotics are available in South Africa (SA) for the treatment of carbapenem-resistant Enterobacterales infections. We describe the successful use of ceftazidime-avibactam (CA) for the treatment of a child with persistent carbapenem-resistant Serratia marcescens bacteraemia, and the challenges faced using this lifesaving antibiotic, including access to susceptibility testing, procurement process, cost and complexity of deciding when, how and for how long to use it. Furthermore, the burden of carbapenem resistance is increasing in SA, and inappropriate use of CA and other newer BLIC antibiotics, such as ceftolozane-tazobactam, will inevitably endanger their longevity. A careful balance must be struck between removing unnecessary obstacles and delays in initiating these antibiotics for life-threatening infections, and additional antimicrobial stewardship-guided interventions aimed at preserving their therapeutic use.


Assuntos
Compostos Azabicíclicos/farmacologia , Ceftazidima/farmacologia , Infecções por Serratia/tratamento farmacológico , Serratia marcescens/efeitos dos fármacos , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Gestão de Antimicrobianos/métodos , Gestão de Antimicrobianos/estatística & dados numéricos , Compostos Azabicíclicos/uso terapêutico , Queimaduras/tratamento farmacológico , Queimaduras/fisiopatologia , Carbapenêmicos/farmacologia , Carbapenêmicos/uso terapêutico , Ceftazidima/uso terapêutico , Combinação de Medicamentos , Feminino , Humanos , Lactente , Infecções por Serratia/fisiopatologia , Serratia marcescens/patogenicidade , África do Sul
10.
Curr Drug Discov Technol ; 18(3): 391-404, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32316896

RESUMO

BACKGROUND: Antibiotic-resistant members of the family Enterobacteriaceae are among the serious threats to human health globally. This study reports the anti-pathogenic activity of Punica granatum peel extract (PGPE) against a multi-drug resistant, beta-lactamase producing member of this family i.e. Serratia marcescens. OBJECTIVE: This study aimed at assessing the anti-pathogenic activity of PGPE against the gramnegative bacterial pathogen S. marcescens and identifying the molecular targets of this extract in the test bacterium. METHODS: Effect of PGPE on S. marcescens growth and quorum sensing (QS)-regulated pigment production was assessed through broth dilution assay. In vivo anti-infective and prophylactic activity of PGPE was assessed employing the nematode worm Caenorhabditis elegans as a model host. Differential gene expression in PGPE-exposed S. marcescens was studied through a whole transcriptome approach. RESULTS: PGPE was able to modulate QS-regulated pigment production in S. marcescens without exerting any heavy growth-inhibitory effect at concentrations as low as ≥2.5 µg/mL. It could attenuate the virulence of the test bacterium towards the worm host by 22-42% (p≤0.01) at even lower concentrations (≥0.5 µg/mL). PGPE also exerted a post-extract effect on S. marcescens. This extract was found to offer prophylactic benefit too, to the host worm, as PGPE-pre-fed worms scored better (34-51%; p≤0.001) survival in face of subsequent bacterial attack. Differential gene expression analysis revealed that PGPE affected the expression of a total of 66 genes in S. marcescens by ≥1.5 fold. CONCLUSION: The anti-virulence effect of PGPE against S. marcescens is multifaceted, affecting stress-response machinery, efflux activity, iron homeostasis, and cellular energetics of this bacterium notably. Among the major molecular targets identified in this study are LPS export transporter permease (LptF), t-RNA pseudouridine synthase (TruB), etc.


Assuntos
Extratos Vegetais/farmacologia , Punica granatum/química , Infecções por Serratia/tratamento farmacológico , Serratia marcescens/efeitos dos fármacos , Animais , Proteínas de Bactérias/antagonistas & inibidores , Proteínas de Bactérias/metabolismo , Caenorhabditis elegans , Modelos Animais de Doenças , Farmacorresistência Bacteriana Múltipla , Etanol/química , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Humanos , Testes de Sensibilidade Microbiana , Extratos Vegetais/isolamento & purificação , Extratos Vegetais/uso terapêutico , Percepção de Quorum/efeitos dos fármacos , Infecções por Serratia/microbiologia , Serratia marcescens/genética , Serratia marcescens/metabolismo , Serratia marcescens/patogenicidade , Solventes , Fatores de Virulência/antagonistas & inibidores , Fatores de Virulência/metabolismo , Água/química
11.
J Med Microbiol ; 70(2)2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33300860

RESUMO

Introduction. Serratia marcescens is a bacterial pathogen that causes ventilator-associated pneumonia and ocular infections. The FlhD and FlhC proteins complex to form a heteromeric transcription factor whose regulon, in S. marcescens, regulates genes for the production of flagellum, phospholipase A and the cytolysin ShlA. The previously identified mutation, scrp-31, resulted in highly elevated expression of the flhDC operon. The scrp-31 mutant was observed to be more cytotoxic to human airway and ocular surface epithelial cells than the wild-type bacteria and the present study sought to identify the mechanism underlying the increased cytotoxicity phenotype.Hypothesis/Gap Statement. Although FlhC and FlhD have been implicated as virulence determinants, the mechanisms by which these proteins regulate bacterial cytotoxicity to different cell types remains unclear.Aim. This study aimed to evaluate the mechanisms of FlhDC-mediated cytotoxicity to human epithelial cells by S. marcescens.Methodology. Wild-type and mutant bacteria and bacterial secretomes were used to challenge airway and ocular surface cell lines as evaluated by resazurin and calcein AM staining. Pathogenesis was further tested using a Galleria mellonella infection model.Results. The increased cytotoxicity of scrp-31 bacteria and secretomes to both cell lines was eliminated by mutation of flhD and shlA. Mutation of the flagellin gene had no impact on cytotoxicity under any tested condition. Elimination of the phospholipase gene, phlA, had no effect on bacteria-induced cytotoxicity to either cell line, but reduced cytotoxicity caused by secretomes to airway epithelial cells. Mutation of flhD and shlA, but not phlA, reduced bacterial killing of G. mellonella larvae.Conclusion. This study indicates that the S. marcescens FlhDC-regulated secreted proteins PhlA and ShlA, but not flagellin, are cytotoxic to airway and ocular surface cells and demonstrates differences in human epithelial cell susceptibility to PhlA.


Assuntos
Proteínas de Bactérias/metabolismo , Toxinas Bacterianas/metabolismo , Flagelos/metabolismo , Proteínas Hemolisinas/metabolismo , Fosfolipases A/metabolismo , Serratia marcescens/patogenicidade , Fatores de Virulência/metabolismo , Células A549 , Animais , Proteínas de Bactérias/genética , Linhagem Celular , Células Epiteliais/patologia , Proteínas Hemolisinas/genética , Humanos , Mariposas/microbiologia , Serratia marcescens/genética , Transativadores/genética , Transativadores/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Fatores de Virulência/genética
12.
Vet Immunol Immunopathol ; 230: 110127, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33080531

RESUMO

Commensal microbiota has been shown to play an important role in local infections. However, the correlation between host respiratory microbiota and Mycoplasma gallisepticum (MG) infection is not well characterized. Here, the results of 16S rRNA sequencing showed that MG infection correlated with alteration in respiratory microbiota of chickens characterized by decreased richness and diversity. To explore whether respiratory microbiota contributed to MG infection, an antibiotics cocktail was used to deplete respiratory microbiota. It has been found that depletion of respiratory Gram-positive and Gram-negative bacteria promoted MG infection, as reflected in the form of increased MG colonization, pro-inflammatory cytokines and proteins expression, and severe lung damage compared to the control group. Importantly, depletion of Gram-negative bacteria in respiratory tract mitigated MG infection, which indicated that certain Gram-negative bacteria may promote MG infection. By reconstitution of individual cultivable respiratory tract bacteria in antibiotic-treated chickens, a respiratory commensal microbe Serratia marcescens was identified to facilitate MG infection. We further found that Serratia marcescens may promote MG infection by downregulating Mucin 2 (MUC2) and tight junction related gene mRNA expression levels in trachea and lung tissues. Together, our data demonstrated that MG infection induced disturbed respiratory microbiota and the specific respiratory commensal bacterium Serratia marcescens could promote MG infection, and thus expand our understanding of the pathogenesis of MG infection.


Assuntos
Coinfecção/veterinária , Microbiota/genética , Infecções por Mycoplasma/veterinária , Mycoplasma gallisepticum/fisiologia , Infecções Respiratórias/microbiologia , Infecções Respiratórias/veterinária , Simbiose , Animais , Galinhas/microbiologia , Coinfecção/microbiologia , Bactérias Gram-Negativas/genética , Bactérias Gram-Positivas/genética , Microbiota/fisiologia , Doenças das Aves Domésticas/microbiologia , RNA Ribossômico 16S/genética , Fatores de Risco , Serratia marcescens/genética , Serratia marcescens/patogenicidade , Organismos Livres de Patógenos Específicos
13.
PLoS One ; 15(7): e0236505, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32701970

RESUMO

Multidrug resistance prompts the search for new sources of antibiotics with new targets at bacteria cell. To investigate the antibacterial activity of Cinnamomum cassia L. essential oil (CCeo) alone and in combination with antibiotics against carbapenemase-producing Klebsiella pneumoniae and Serratia marcescens. The antimicrobial susceptibility of the strains was determined by Vitek® 2 and confirmed by MALDI-TOF/TOF. The antibacterial activity of CCeo and its synergism with antibiotics was determined using agar disk diffusion, broth microdilution, time-kill, and checkboard methods. The integrity of the bacterial cell membrane in S. marcescens was monitored by protein leakage assay. CCeo exhibited inhibitory effects with MIC = 281.25 µg.mL-1. The association between CCeo and polymyxin B showed a decrease in terms of viable cell counts on survival curves over time after a 4 hour-treatment with a FIC index value of 0.006. Protein leakage was observed with increasing concentrations for CCeo and CCeo + polymyxin B treatments. CCeo showed antibacterial activity against the studied strains. When associated with polymyxin B, a synergistic effect was able to inhibit bacterial growth rapidly and consistently, making it a potential candidate for the development of an alternative treatment and drug delivery system for carbapenemase-producing strains.


Assuntos
Infecções por Klebsiella/tratamento farmacológico , Óleos Voláteis/farmacologia , Polimixina B/farmacologia , Infecções por Serratia/tratamento farmacológico , Antibacterianos/farmacologia , Proteínas de Bactérias/antagonistas & inibidores , Proteínas de Bactérias/genética , Cinnamomum aromaticum/química , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Farmacorresistência Bacteriana Múltipla/genética , Sinergismo Farmacológico , Humanos , Infecções por Klebsiella/genética , Infecções por Klebsiella/microbiologia , Klebsiella pneumoniae/efeitos dos fármacos , Klebsiella pneumoniae/patogenicidade , Infecções por Serratia/genética , Infecções por Serratia/microbiologia , Serratia marcescens/efeitos dos fármacos , Serratia marcescens/patogenicidade , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , beta-Lactamases/genética
14.
Antonie Van Leeuwenhoek ; 113(9): 1313-1321, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32607923

RESUMO

Bacterial septicemia commonly occurs and usually cause huge losses in sericulture industry. Here, two pathogenic bacterial strains were isolated from dead silkworm and named as ZJ-1 and ZJ-2. Phenotypic and genotypic analysis results revealed that both of these two strains are closely related to Serratia marcescens (S. marcescens). The morphological as well as physiological and biochemical characteristics of ZJ-1 were accordant with S. marcescens mentioned in Bergey's manual of determinative bacteriology, whereas ZJ-2 showed some discrepancies such as the utilization of malonate and starch, fermentation of maltose and sucrose, and tests of urease, etc. Surprisingly, ZJ-2 could produce red pigment at high temperature (37°) but ZJ-1 could not. Besides, by analyzing the lethal concentration 50 (LC50) of ZJ-1 and ZJ-2, it was found that the virulence of ZJ-2 was lower than that of ZJ-1. These results revealed that ZJ-1 and ZJ-2 were two different strains of S. marcescens and that ZJ-2 was expected to be a safe (low-toxicity) and efficient strain for the production of red pigment. Nonetheless, further research in molecular level is needed to understand the regulation mechanism of pigment production and infection of ZJ-2.


Assuntos
Bombyx/microbiologia , Corantes/metabolismo , Filogenia , Serratia marcescens/classificação , Serratia marcescens/patogenicidade , Animais , Técnicas de Tipagem Bacteriana , DNA Bacteriano/genética , Tipagem Molecular , RNA Ribossômico 16S/genética , Virulência
15.
Int J Med Sci ; 17(12): 1833-1839, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32714086

RESUMO

Catheter-related bloodstream infections (CRBSIs) due to pathogenic microorganisms pose a major threat to patients requiring parenteral nutrition (PN). Additives contained in medicines and foods have antiproliferative and bacteriostatic effects on pathogenic microorganisms. Therefore, PN solutions containing additives may also have an antibacterial effect. However, so far, there have been no reports on or observations of a PN solution with bactericidal activity. In this study, we assessed several nutrition solutions with antimicrobial activities and investigated their effects on pathogenic microorganisms colonizing catheter lumens. We selected the highly acidic Plas-Amino® (PA), which contains a large amount of sodium bisulfite as a preservative and potentially has an antimicrobial effect. In this study, we used the following pathogenic bacteria as the main causatives of CRBSIs: Staphylococcus aureus, Staphylococcus epidermidis, Bacillus cereus, Serratia marcescens, Pseudomonas aeruginosa, and Candida albicans. We then created a catheter lumen microorganism contamination model and evaluated the antibacterial effect of PA; we found that all bacteria in the control group grew significantly in the catheter lumen in a time-dependent manner at 48 and 72 h. On the other hand, we demonstrated that PA has bactericidal effects on S. aureus, S. epidermidis, B. cereus, S. marcescens, and P. aeruginosa in the catheter lumen and confirmed that it has a remarkable antiproliferative effect on C. albicans. Hence, we concluded that highly acidic PN solutions that contain a preservative like sodium bisulfite have bactericidal and growth inhibition effects on microorganisms in the catheter lumens of patients with CRBSIs and patients with totally implantable central venous access devices, in whom it is difficult to remove the catheter.


Assuntos
Antibacterianos/farmacologia , Infecções Relacionadas a Cateter/tratamento farmacológico , Soluções de Nutrição Parenteral/farmacologia , Infecções Estafilocócicas/tratamento farmacológico , Infecções Relacionadas a Cateter/microbiologia , Infecções Relacionadas a Cateter/patologia , Cateteres/microbiologia , Proliferação de Células/efeitos dos fármacos , Humanos , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/patogenicidade , Serratia marcescens/efeitos dos fármacos , Serratia marcescens/patogenicidade , Infecções Estafilocócicas/patologia , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/patogenicidade , Staphylococcus epidermidis/efeitos dos fármacos , Staphylococcus epidermidis/patogenicidade , Sulfitos/farmacologia
16.
Fungal Biol ; 124(7): 629-638, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32540186

RESUMO

In nature, microorganisms often exhibit competitive behavior for nutrients and limited space, allowing them to alter the virulence determinants of pathogens. The human pathogenic yeast Cryptococcus neoformans can be found organized in biofilms, a complex community composed of an extracellular matrix which confers protection against predation. The aim of this study was to evaluate and characterize antagonistic interactions between two cohabiting microorganisms: C. neoformans and the bacteria Serratia marcescens. The interaction of S. marcescens with C. neoformans expressed a negative effect on biofilm formation, polysaccharide capsule, production of urease, and melanization of the yeast. These findings evidence that competition in mixed communities can result in dominance by one species, with direct impact on the physiological modulation of virulence determinants. Such an approach is key for understating the response of communities to the presence of competitors and, ultimately, rationally designing communities to prevent and treat certain diseases.


Assuntos
Biofilmes , Cryptococcus neoformans , Interações Microbianas , Serratia marcescens , Cryptococcus neoformans/patogenicidade , Cryptococcus neoformans/fisiologia , Interações Microbianas/fisiologia , Serratia marcescens/patogenicidade , Serratia marcescens/fisiologia , Fatores de Virulência/metabolismo
17.
Infect Immun ; 88(8)2020 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-32393508

RESUMO

Serratia marcescens is a bacterium frequently found in the environment, but over the last several decades it has evolved into a concerning clinical pathogen, causing fatal bacteremia. To establish such infections, pathogens require specific nutrients; one very limited but essential nutrient is iron. We sought to characterize the iron acquisition systems in S. marcescens isolate UMH9, which was recovered from a clinical bloodstream infection. Using RNA sequencing (RNA-seq), we identified two predicted siderophore gene clusters (cbs and sch) that were regulated by iron. Mutants were constructed to delete each iron acquisition locus individually and in conjunction, generating both single and double mutants for the putative siderophore systems. Mutants lacking the sch gene cluster lost their iron-chelating ability as quantified by the chrome azurol S (CAS) assay, whereas the cbs mutant retained wild-type activity. Mass spectrometry-based analysis identified the chelating siderophore to be serratiochelin, a siderophore previously identified in Serratia plymuthica Serratiochelin-producing mutants also displayed a decreased growth rate under iron-limited conditions created by dipyridyl added to LB medium. Additionally, mutants lacking serratiochelin were significantly outcompeted during cochallenge with wild-type UMH9 in the kidneys and spleen after inoculation via the tail vein in a bacteremia mouse model. This result was further confirmed by an independent challenge, suggesting that serratiochelin is required for full S. marcescens pathogenesis in the bloodstream. Nine other clinical isolates have at least 90% protein identity to the UMH9 serratiochelin system; therefore, our results are broadly applicable to emerging clinical isolates of S. marcescens causing bacteremia.


Assuntos
Bacteriemia/microbiologia , Proteínas de Bactérias/genética , Ferro/metabolismo , Infecções por Serratia/microbiologia , Serratia marcescens/genética , Serratia marcescens/patogenicidade , Sideróforos/genética , Animais , Bacteriemia/sangue , Bacteriemia/imunologia , Bacteriemia/patologia , Proteínas de Bactérias/imunologia , Ligação Competitiva , Feminino , Deleção de Genes , Regulação da Expressão Gênica , Teste de Complementação Genética , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/imunologia , Humanos , Transporte de Íons , Ferro/imunologia , Camundongos , Camundongos Endogâmicos CBA , Família Multigênica , Ligação Proteica , Infecções por Serratia/sangue , Infecções por Serratia/imunologia , Infecções por Serratia/patologia , Serratia marcescens/imunologia , Sideróforos/imunologia , Virulência
18.
PLoS One ; 15(4): e0231625, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32298346

RESUMO

BACKGROUND: Serratia marcescens is an emerging pathogen that causes a variety of health care associated infections. S. marcescens is equipped with an arsenal of virulence factors such as biofilm formation, swimming and swarming motilities, prodigiosin, protease and others which enable it to initiate and cause the infection. These virulence factors are orchestrated under the umbrella of an intercellular communication system named Quorum sensing (QS). QS allows bacterial population to synchronize the expression of virulence genes upon detection of a chemical signaling molecule. Targeting bacterial virulence is a promising approach to attenuate bacteria and enhances the ability of immune system to eradicate the bacterial infection. Drug repurposing is an advantageous strategy that confers new applications for drugs outside the scope of their original medical use. This promising strategy offers the use of safe approved compounds, which potentially lowers the costs and shortens the time than that needed for development of new drugs. Sitagliptin is dipeptidyl peptidase-4 (DPP-4) inhibitor, is used to treat diabetes mellitus type II as it increases the production of insulin and decreasing the production of glucagon by the pancreas. We aimed in this study to repurpose sitagliptin, investigating the anti-virulence activities of sitagliptin on S. marcescens. METHODS: The effect of sub-inhibitory concentrations of sitagliptin on virulence factors; protease, prodigiosin, biofilm formation, swimming and swarming motilities was estimated phenotypically. The qRT-PCR was used to show the effect of sitagliptin on the expression of QS-regulated virulence genes. The in-vivo protective activity of sitagliptin on S. marcescens pathogenesis was evaluated on mice. RESULTS: Sitagliptin (1 mg/ml) significantly reduced the biofilm formation, swimming and swarming motilities, prodigiosin and protease. The qRT-PCR confirmed the effect on virulence as shown by down regulating the expression of fimA, fimC, flhC, flhD, bsmB, rssB, rsmA, pigP, and shlA genes. Moreover, the in-vivo findings showed the efficient ability of sitagliptin to weaken S. marcescens pathogenesis. CONCLUSION: Sitagliptin is a promising anti-virulence agent against S. marcescens that may be beneficial in the control of healthcare associated infections caused by S. marcescens.


Assuntos
Antibacterianos/farmacologia , Reposicionamento de Medicamentos , Hipoglicemiantes/farmacologia , Serratia marcescens/efeitos dos fármacos , Fosfato de Sitagliptina/farmacologia , Virulência/efeitos dos fármacos , Biofilmes/efeitos dos fármacos , Infecção Hospitalar/tratamento farmacológico , Infecção Hospitalar/microbiologia , Humanos , Percepção de Quorum/efeitos dos fármacos , Infecções por Serratia/tratamento farmacológico , Infecções por Serratia/microbiologia , Serratia marcescens/patogenicidade , Serratia marcescens/fisiologia
19.
Surg Infect (Larchmt) ; 21(7): 608-612, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32326831

RESUMO

Background: Serratia marcescens is an enteric bacterium with increasing incidence in clinical settings, attributed mainly to the opportune expression of diverse virulence determinants plus a wide intrinsic and acquired antibiotic resistance. Methods: The aim of this study was to compare the virulence factor profiles of 185 Serratia marcescens isolates from different clinical origins. In vitro proteolytic and hemolytic activities, biofilm formation, and motility were assessed in each strain. Additionally, the pathogenicity of four hypervirulent strains was analyzed in vivo in Galleria mellonella. Results: We found that bacterial isolates from wound/abscess and respiratory tract specimens exhibited the highest protease activity along with a strong biofilm production, while uropathogenic isolates showed the highest hemolytic activity. Swarming and swimming motilities were similar among all the strains. However, respiratory tract isolates showed the most efficient motility. Two hyperhemolytic and two hyperproteolytic strains were detected; the latter were more efficient killing Galleria mellonella with a 50%-60% larval mortality 48 hours after challenge. Conclusion: A correlation was found between biofilm formation and proteolytic and hemolytic activities in biopsy specimens and bloodstream isolates, respectively. Overall, it becomes critical to evaluate and compare the clinical strains virulence diversity in order to understand the underlying mechanisms that allow the establishment and persistence of opportunistic bacterial infections in the host.


Assuntos
Antibacterianos/farmacologia , Resistência Microbiana a Medicamentos/efeitos dos fármacos , Serratia marcescens/patogenicidade , Biofilmes/crescimento & desenvolvimento , Infecção Hospitalar , Hemólise/fisiologia , Humanos , México/epidemiologia , Peptídeo Hidrolases/fisiologia , Serratia marcescens/isolamento & purificação , Virulência , Fatores de Virulência
20.
BMC Ophthalmol ; 20(1): 120, 2020 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-32216768

RESUMO

BACKGROUND: The cellular process of autophagy is essential for maintaining the health of ocular tissue. Dysregulation of autophagy is associated with several ocular diseases including keratoconus and macular degeneration. It is known that autophagy can be used to respond to microbial infections and that certain microbes can exploit the autophagic process to their benefit. In this study, a genetic approach was used to identify surface-associated and secreted products generated by the opportunistic pathogen Serratia marcescens involved in activation of autophagy. METHODS: A recombinant human corneal limbal epithelial cell line expressing a LC3-GFP fusion protein was challenged with normalized secretomes from wild-type and mutant S. marcescens derivatives. LC3-GFP fluorescence patterns were used to assess the ability of wild-type and mutant bacteria to influence autophagy. Purified prodigiosin was obtained from stationary phase bacteria and used to challenge ocular cells. RESULTS: Mutations in the global regulators eepR and gumB genes highly reduced the ability of the bacteria to activate autophagy in corneal cells. This effect was further narrowed down to the secreted cytolysin ShlA and the biologically active pigment prodigiosin. Purified prodigiosin and ShlA from Escherichia coli further supported the role of these factors in activating autophagy in human corneal cells. Additional genetic data indicate a role for flagellin and type I pili, but not the nuclease, S-layer protein, or serratamolide biosurfactant in activation of autophagy. CONCLUSIONS: This work identifies specific bacterial components that activate autophagy and give insight into potential host-pathogen interactions or compounds that can be used to therapeutically manipulate autophagy.


Assuntos
Autofagia/efeitos dos fármacos , Proteínas de Bactérias/farmacologia , Epitélio Corneano/patologia , Proteínas Hemolisinas/farmacologia , Limbo da Córnea/citologia , Prodigiosina/farmacologia , Serratia marcescens/patogenicidade , Adenina/análogos & derivados , Adenina/farmacologia , Fenômenos Fisiológicos Bacterianos , Linhagem Celular , Proteínas de Fluorescência Verde , Humanos , Ceratite/microbiologia , Microscopia Confocal , Perforina , Serratia marcescens/genética , Serratia marcescens/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...